Notre Dame researchers advance encryption and high-performance microelectronics technologies
Researchers at the University of Notre Dame have received new funding through the Silicon Crossroads Microelectronic Commons (SCMC) Hub as a part of the CHIPS and Science Act. In the fall of 2024, the White House announced the initial round of technical projects through the Microelectronic Commons program. The SCMC Hub was funded five (5) of the 34 technical projects, two of which will involve Notre Dame faculty members.
“We couldn’t be more excited about our researchers' continued success in attracting funding from the CHIPS and Science Act to the University,” said Jeffrey F. Rhoads, vice president for research and professor in the Department of Aerospace and Mechanical Engineering. “These successes are a testament to the many decades of research and investment that have established Notre Dame as a leader in microelectronics, and we are particularly thrilled to contribute our expertise to the effort to onshore microelectronics manufacturing in a way that benefits our community and region.”
IMCRYPTO: An Efficient Hardware Crypto Engine based on In-Memory Computing
The first new project will be led by Xiaobo Sharon Hu, the Leo E. and Patti Ruth Linbeck Professor of Engineering at Notre Dame. Called IMCRYPTO, the project will utilize in-memory computing (IMC) to create a high-performance, programmable encryption and decryption engine. Encryption is essential for safeguarding data relied upon by the U.S. government and private citizens. Hu’s project will introduce a new kind of hardware that speeds up encryption and decryption and makes them more energy efficient while also making the encryptions themselves more secure. This energy efficiency is particularly important for mobile devices, where power demands can impact battery life.
Hu’s team at Notre Dame also includes Siddharth Joshi and Michael Niemier and will be joined by partners at the University of South Florida, Analog Devices, Raytheon, and NSWC Crane.
High-Performance Diamond Electronics for Next-Generation Defense Systems
Patrick Fay, the Stinson Professor of Nanotechnology at Notre Dame and director of the Notre Dame Nanofabrication Facility (NDNF), will serve as a key member in a second newly-funded project called “High-Performance Diamond Electronics for Next Generation Defense Systems.” The project is led by Great Lakes Crystal Technologies, a startup launched with support from the AFRL Regional Network – Midwest, a science and technology ecosystem co-founded by Rhoads while at Purdue University. In addition to the University of Notre Dame, the team includes GE Aerospace, Penn State Applied Research Laboratory, University of Illinois at Urbana-Champaign, Michigan State University, the Army Research Laboratory, and the Naval Research Laboratory.
The project will utilize Notre Dame's unique capabilities in its high frequency test and measurement facility for characterizing transistor function in order to improve circuit design. Notre Dame's role is evaluating and modeling the transistors that result from the project, ensuring they take advantage of the distinct material properties of diamond. The project utilizes instrumentation in Fay's lab and in the Notre Dame Nanofabrication Facility, both of which are housed in the Stinson-Remick Hall of Engineering. Notre Dame was previously funded by Silicon Crossroads to expand their high frequency test and measurement facility to include on-wafer and over-the-air testing up to 220 GHz.
The Silicon Crossroads Microelectronic Commons (SCMC) Hub is one of eight nationally funded hubs, led by the Applied Research Institute. The SCMC Hub is an innovation ecosystem comprised of diverse partners driven to accelerate the expansion of America’s microelectronics base by leveraging strong collaborative practices that strategically support innovation, workforce development, and infrastructure needs to achieve domestic microelectronics excellence. To learn more about the SCMC Hub, please visit www.siliconcrossroads.us
To learn more about the University of Notre Dame’s pioneering work in microelectronics, please visit https://nano.nd.edu/research/notre-dame-and-the-chips-and-science-act/
Latest Research
- Psychologist awarded Young Investigator Grant to advance autism research in children…
- Opponents, exonerees to take part in inaugural Death Penalty Abolition Week at Notre DameNotre Dame Law School will host Death Penalty Abolition Week from Monday to Thursday (March 24 to 27) at the University of Notre Dame, featuring a series of talks from exonerees and opponents of the death penalty.
- Brandon E. Roach appointed vice president and Robert K. Johnson General CounselUniversity of Notre Dame President Rev. Robert A. Dowd, C.S.C., announced that Brandon E. Roach has been appointed vice president and Robert K. Johnson General Counsel effective June 1. Roach’s appointment follows an extensive national search.
- Allison and Thomas Franco make transformative gift for Notre Dame institute advancing research excellence and public engagement in the liberal artsAllison and Thomas Franco of New York City have made a transformative gift to the University of Notre Dame to endow an institute in the College of Arts & Letters that provides unparalleled support for faculty and student research and will significantly expand its commitment to catalyzing work that connects broadly and deeply with the public.
- Cushwa Center announces research funding recipients for 2025In 2025, the Cushwa Center is providing support to a record 33 researchers for a variety of projects. Funds are supporting visits to the University of Notre Dame Archives and at other research repositories in Boston, Chicago, New York, Philadelphia, St. Louis, and St. Paul, as well as international…
- Corita Kent on screen: A conversation with Jillian Schultz and Leah ThompsonJillian Schultz and Leah Thompson Filmmakers…