Airborne disease detection made easier with new, low-cost device
Airborne hazardous chemicals can be dilute, mobile and hard to trap. Yet, accurately measuring these chemicals is critical in protecting human health and the environment.
Now, a new, small, low-cost device, nicknamed ABLE, could make the collection and detection of airborne hazards much more efficient. The device, just four by eight inches across, was devised by Jingcheng Ma, assistant professor of aerospace and mechanical engineering at the University of Notre Dame, and researchers at the University of Chicago. The results of their work were published in Nature Chemical Engineering.
ABLE has immediate applications in hospitals, where viruses, bacteria and nanoplastics can be detected directly from the air — offering less invasive alternatives to blood draws, particularly for vulnerable infants in neonatal units.
“Many important biomarkers — molecules your body produces when it’s dealing with pathogens — are very dilute in the air. They could be at the parts per billion level. Trying to find them is like locating six to seven people in the global population — very difficult,” said Ma, the study’s first author, who conducted the research as a postdoc at the University of Chicago.
Ma, whose graduate training was in thermal science and energy systems — a field in which the transfer of water from liquid to steam is central — wondered how airborne biomarkers might behave if condensed into liquid. Could these molecules be captured in water droplets? Would their concentration in liquid be the same as their concentration in air? Would different molecules condense differently?
If airborne biomarkers are tested in gas form, large, expensive machines — such as mass spectrometers — are usually necessary. However, if the researchers could convert the air into a liquid, an array of low-cost, accurate measuring tools became available — paper-based test strips, electro-chemical sensors, enzyme assays and optical sensors.
“We discovered that many molecules can effectively enter water droplets even when their concentration is very low,” Ma said. “We didn’t need to develop any advanced chemical systems to capture these biomarkers in water. It’s a very natural process.”
The ABLE device, which can be made for under $200, sucks in air, adds water vapor and cools it. The air sample condenses into water droplets on a surface of microscopic silicon spikes — a process through which even tiny amounts of contaminant become highly concentrated. These droplets then slide into a reservoir where they are tested for biomarkers.
Ma’s research group, the Interfacial Thermofluids Lab (ITL), is exploring ways to miniaturize ABLE, enabling it to fit into portable sensing systems or robotic platforms for environmental and healthcare monitoring. The group is also working with community partners to monitor the health of vulnerable infants in neonatal care.
“I like to do what I call ‘budget research,’ that is, use simple and low-cost components, but do something important that no one has achieved before. I like research that delivers something everyone can buy from the store,” Ma said.
Ma’s work is supported by US Army Research Office, University of Chicago and University of Notre Dame startup grants, the Technology Development Fund from the Berthiaume Institute for Precision Health , the Grier Prize for Innovation Research in the Biophysical Sciences, and the National Institute of Health.
Contact: Brandi Wampler, associate director of media relations, 574-631-2632, brandiwampler@nd.edu
Latest ND NewsWire
- First impressions count: How babies are talked about during ultrasounds impacts parent perceptions, caregiving relationshipPsychologist Kaylin Hill studied the impact of a parent’s first impression of their baby during an ultrasound exam. The words used by the medical professional to describe the baby (positive or negative) influence how the parents perceive their baby, relate to them after they're born and even how that child behaves as a toddler. The research has broad implications for how we train medical professionals to interact with expectant parents, as well as how we care for parents during the perinatal period when they are most susceptible to depression.
- Researchers at Notre Dame detect ‘forever chemicals’ in reusable feminine hygiene productsWhen a reporter with the Sierra Club magazine asked Graham Peaslee, a physicist at the University of Notre Dame, to test several different samples of unused menstrual underwear for per- and polyfluoroalkyl substances (PFAS) in 2019, the results fueled concern over chemical exposure in feminine hygiene products — which ultimately ended up in a $5 million lawsuit against the period and incontinence underwear brand Thinx. Then in 2023, the New York Times asked Peaslee to test 44 additional period and incontinence products for PFAS, a class of toxic fluorinated compounds inherently repellent to oil, water, soil and stains, and known as “forever chemicals” for their exceptionally strong chemical and thermal stability. Measurable PFAS were found in some layers of many of the products tested — some low enough to suggest the chemicals may have transferred off packaging materials, while others contained higher concentrations, suggesting the chemicals were intentionally used during the manufacturing process. In the meantime, another group of researchers published a study that found PFAS in single-use period products, leading Peaslee and his lab to widen their investigation into all sorts of reusable feminine hygiene products — often viewed as an eco-friendly option by consumers. Now, the results of that study have been published in Environmental Science & Technology Letters.
- Smarter tools for policymakers: Notre Dame researchers target urban carbon emissions, building by buildingCarbon emissions continue to increase at record levels, fueling climate instability and worsening air quality conditions for billions in cities worldwide. Yet despite global commitments to carbon neutrality, urban policymakers still struggle to implement effective mitigation strategies at the city scale. Now, researchers at Notre Dame’s School of Architecture, the College of Engineering and the Lucy Family Institute for Data & Society are working to reduce carbon emissions through advanced simulations and a novel artificial intelligence-driven tool, EcoSphere.
- Notre Dame Lead Innovation Team partners with local WIC program to identify, prevent lead poisoning in childrenB.A.B.E. store “shoppers” now have something new to help their families: free lead screening kits offered by the University of Notre Dame’s Lead Innovation Team.
- Vatican honors Martin and Carmel Naughton with papal awardThe late Pope Francis, in one of his last acts, conferred the honour of the Order of Saint Gregory the Great upon Carmel and Martin Naughton, Trustee Emeritus of the University of Notre Dame. The papal honor is in recognition of the Naughtons’ outstanding philanthropy in the areas of education and the arts, particularly in the provision of philanthropic support and scholarships to Catholic education at the University of Notre Dame and Kylemore Abbey, and in their transformative contributions to higher education in Ireland.
- Brain tumor growth patterns may help inform patient care managementAssistant Professor Meenal Datta (University of Notre Dame/Wes Evard) A team of researchers from the University of Notre Dame, Harvard Medical School/Massachusetts General Hospital, and Boston University has developed a technique for measuring a brain tumor’s mechanical force and a new model to estimate how much brain tissue a patient has lost.