NDTL Develops CO₂ Component Test Capability and Successfully Tests High Efficiency Transcritical CO₂ Compressor
NDTL Propulsion and Power (NDTL) has designed and built a closed test loop and a CO₂ storage and management system to support testing for supercritical and transcritical CO₂ power and thermal management components. The test loop can be installed in NDTL’s 10-megawatt, 5-megawatt, or 3-megawatt test cells to match the power, speed, and flow requirements of a particular test article. NDTL recently completed testing of the first stage of a high-efficiency multistage transcritical CO₂ compressor.
The development of high-efficiency compression systems is important for the design of CO₂-based power and heat pump cycles. Axial compressors inherently have higher efficiency compared to centrifugal and reciprocating machines, but they have not yet been tested or demonstrated using CO₂ as the working fluid. The high fluid density, high power density, and significant real gas effects present technical challenges in designing and testing an axial compressor.
With support from the U.S. Department of Energy (DOE), the team composed of NDTL, Echogen, and the University of Cincinnati is demonstrating the system efficiency advantages of utilizing axial compressors in renewable energy storage systems. This is being accomplished with the design and test of a 3-stage transcritical CO₂ axial compressor.
NDTL designed and fabricated the test loop, performed the mechanical design of the high-power density compressor, and is executing the test program. The University of Cincinnati, employing best practices from air-breathing compressors for aero-propulsion engines, performed the aerodynamic compressor design. Echogen leads the overall program and developed the transition path to a fielded system. Echogen has also provided its expertise in supercritical CO₂ systems.
The test loop consists of a variable speed drive motor, CO₂ inventory system, a heat exchanger between the CO₂ loop and the water/glycol loop, high accuracy Coriolis flowmeter, and cooling towers. The closed loop is installed in a test cell fully equipped with data acquisition and control systems.
The initial testing of the first stage of the 3-stage axial compressor was completed at NDTL using the closed sCO₂ compressor test loop installed in the 10 MW cell. Steady-state conditions were obtained by removing enthalpy from the loop using a CO₂ – water/glycol heat exchanger. The nominal design speed, pressure ratio, and mass flow rate of the compressor are 19,800 rpm, 1.42, and 125 kg/s, respectively.
The compressor mapping test was performed from 60% to 100% corrected speed. The pressure ratio and the efficiency of the compressor were measured through the total pressure and total temperature rakes, which were installed at the inlet and the exit of the test compressor. All nine rakes were calibrated via an in-house flow calibration jet facility. The measured pressure ratio and the efficiency of the compressor aligned well with design predictions, and the measured isentropic efficiency of the compressor was above 90%.
NDTL is preparing to begin testing of the 3-stage compressor. Updates are forthcoming.
Originally published by ndtl.nd.edu on November 27, 2023.
atLatest Research
- Big Tech privacy policies limit ad variety, reducing performance and revenuePrivacy-preserving policies that shorten the retention period of consumer data can reduce ad variety in multi-product ads, ultimately impacting ad performance and platform revenues, according to new research from Shijie Lu, the Howard J. and Geraldine F. Korth Associate Professor of Marketing.
- Indiana Justice Project and the Notre Dame Clinical Law Center publish a report on the future of eviction record sealing in IndianaIndiana Justice Project (IJP) and the Notre Dame Clinical Law Center have issued a report on policy options to consider…
- Notre Dame President Emeritus Rev. John I. Jenkins, C.S.C., visits key sites in Lviv, UkraineRev. John I. Jenkins, C.S.C., president emeritus of the University of Notre Dame, recently visited the Ukrainian Catholic University (UCU) and key sites in Lviv, Ukraine, as a sign of Notre Dame’s continued support for the university and its students. It was his first international trip on behalf of Notre Dame since stepping down from the presidency at the end of the 2023-24 academic year.
- Notre Dame marks another year of unprecedented research successDuring the 2024 fiscal year, researchers at the University of Notre Dame submitted 1,310 proposals for external research funding for a total amount of $1.016 billion — the first time the University has surpassed the billion-dollar mark for proposals. In addition, the University received 829 separate awards — the largest number on record. With $223 million in total funding, these awards propelled the University past the $200 million mark for the fourth straight year.
- Chile provides fruitful opportunities for collaboration and researchAll over the world, Notre Dame faculty are carrying out research and making exciting discoveries. For most, their work would not be possible if not for partnerships with global universities, programs, and individuals. One such example is the research produced by Yamil J. Colón-Rodríguez, Ph.D., assistant…
- Notre Dame startups Grannus Therapeutics and TayCo Brace gain recognition and opportunities at Rally pitch competitionElevate Ventures' second annual Rally IN-Prize pitch contest, held on August 27 and 28 in Indianapolis, is touted as one of the world’s largest startup investment pitch competitions, offering up to $1 million in investment financing…