Dynamic changes in pH during cell division hold clues for cancer, Notre Dame researchers show
Scientists have known that the pH within cancer cells is generally higher than the pH within non-cancerous ones.

This increase in pH allows cancer cells to grow and divide more successfully, but previous studies were conducted using populations of thousands or tens of thousands of cells that could be in various stages of cell division.
A new study in the Journal of Cell Science by University of Notre Dame researchers examined individual cells instead, and showed that cancer cells have a higher pH than normal cells, but discovered that single-cell pH changes dynamically during the four phases of cell division. This discovery could eventually lead to therapies that will limit cancer cells’ ability to grow and divide.
Julia Spear, a doctoral student in the Integrated Biomedical Sciences program in the lab of Katharine White, the Clare Luce Booth Assistant Professor in the Department of Chemistry and Biochemistry, completed the research using normal and cancerous human lung cells and manipulating their pH to determine how they progressed through the cell cycle.
“Julia’s paper really adds on a significant understanding of what’s going on at the single- cell level,” said White, who is affiliated with Harper Cancer Research Institute. “There are big questions about where and when pH changes are happening during cell division and whether those changes are required or sufficient for cell division.”
[Watch as a single cell progresses through the cell cycle and divides into two daughter cells.]
White and Spear knew that pH dynamics within cells—intracellular pH (pHi)—signal them to start migrating or dividing. At the population level, previous research showed that preventing cells from having higher pH can delay division, but the mechanisms or reasons for this outcome were unclear.
Spear found that single-cell pH decreases when a cell decides to initiate the process of cell growth and division, but increases during the middle of the phase where each of the 23 chromosomes are duplicated. Later in that phase, however, pH decreases again, and increases just before the cell condenses its chromosomes for division. During the final phase of division, however, as the duplicated chromosomes separate into daughter cells, pH rapidly decreases again.

“Julia showed that increased pHi led to more successful division and that lowering pH in the cells really did suggest that if she was able to lower pH anywhere during the process, regardless of the actual raw value of pH, cells would have difficulty dividing,” White said.
Taken together, Spear’s data suggests lowering pH in cancer cells may block cancer cell division and growth. However, lowering pH of all cells in the body for cancer treatment simply is not an option, which has been a sticking point in targeting pH for cancer treatment.
“One of the issues is that most of those pH-lowering drugs fail in clinical trials because lowering pH damages very important tissues - your kidneys and heart,” White said. “This is why understanding the effects of increased pH is so important. It allows us to design drugs that target the underlying pH-dependent behavior.”
Understanding where the pH changes occur during cell division may someday help clinicians better treat the cells at the stage where lowering their pH would have the most benefit, Spear said.
Up next: The team is creating an experiment to find out which proteins sense the pH dynamics and shepherd the transitions between the phases of cell division, because that is one area the paper was not able to address.
Spear said she is excited to continue the fundamental research into the process of cancer cell division.
“While I’m not the one curing cancer, I’m showing the fundamentals of where and when pH changes might be important,” she said. “Then I’m giving someone else in the lab that data so they can identify the proteins to go after.”
The research was funded by an NIH Director’s New Innovator Award (DP2-DP2CA260416).
Originally published by science.nd.edu on June 05, 2023.
atLatest Research
- Studying Survivor : How two Notre Dame courses apply reality TV to philosophy, psychology, and mathStudents…
- Junior Alex Young named 2025 Truman ScholarUniversity of Notre Dame junior Alex Young has been named a 2025 Truman Scholar. He is the University’s 13th Truman Scholar since 2010, a group that includes three Rhodes Scholars: Alex Coccia (’14), Christa Grace Watkins (’17) and Prathm Juneja (’20).
- Notre Dame listed as World Leader in Nuclear AstrophysicsNuclear astrophysics…
- “Contagious capitalism”: Keough School Dean Mary Gallagher shares research insights on law, labor and justice in ChinaMary Gallagher, the Marilyn Keough Dean of the Keough School of Global Affairs, delivered the fifth annual Justice and Asia Distinguished Lecture at the school’s Liu Institute for Asia and Asia Studies on April 8, drawing on her research expertise to share insights on law, labor and justice in China.
- Thirteenth Annual Harper Cancer Research DayRohit Bhargava The 13th annual…
- Two Notre Dame historians win Guggenheim fellowshipsTwo faculty members in the University of Notre Dame’s College of Arts & Letters have been awarded fellowships from the John Simon Guggenheim Memorial Foundation as part of its 100th class of honorees.